Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
PeerJ ; 12: e16751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406288

RESUMO

Corynebacterium pseudotuberculosis is a gram-positive bacterium and is the etiologic agent of caseous lymphadenitis (CL) in small ruminants. This disease is characterized by the development of encapsulated granulomas in visceral and superficial lymph nodes, and its clinical treatment is refractory to antibiotic therapy. An important virulence factor of the Corynebacterium genus is the ability to produce biofilm; however, little is known about the characteristics of the biofilm produced by C. pseudotuberculosis and its resistance to antimicrobials. Silver nanoparticles (AgNPs) are considered as promising antimicrobial agents, and are known to have several advantages, such as a broad-spectrum activity, low resistance induction potential, and antibiofilm activity. Therefore, we evaluate herein the activity of AgNPs in C. pseudotuberculosis, through the determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antibiofilm activity, and visualization of AgNP-treated and AgNP-untreated biofilm through scanning electron microscopy. The AgNPs were able to completely inhibit bacterial growth and inactivate C. pseudotuberculosis at concentrations ranging from 0.08 to 0.312 mg/mL. The AgNPs reduced the formation of biofilm in reference strains and clinical isolates of C. pseudotuberculosis, with interference values greater than 80% at a concentration of 4 mg/mL, controlling the change between the planktonic and biofilm-associated forms, and preventing fixation and colonization. Scanning electron microscopy images showed a significant disruptive activity of AgNP on the consolidated biofilms. The results of this study demonstrate the potential of AgNPs as an effective therapeutic agent against CL.


Assuntos
Anti-Infecciosos , Infecções por Corynebacterium , Corynebacterium pseudotuberculosis , Linfadenite , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Nanopartículas Metálicas/uso terapêutico , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Infecções por Corynebacterium/tratamento farmacológico , Linfadenite/tratamento farmacológico , Biofilmes
2.
Tissue Cell ; 87: 102293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244400

RESUMO

The current study investigated the potential effects of probiotic supplementation on colorectal carcinogenesis chemically induced with 1,2-dimethylhydrazine (DMH) and treated with 5-fluorouracil (5FU)-based chemotherapy in mice. Animals were randomly allocated in five different groups: Control: which not receive any treatment throughout the experimental course; Colitis model group (DMH): treated with DMH; DMH+ 5FU: animals received I.P. (intraperitoneal) dose of chemotherapy on a weekly basis; DMH+PROB: animals received daily administrations (via gavage) of probiotics (Lactobacillus: acidophilus and paracasei, Bifidobacterium lactis and bifidum); and DMH+ PROB+ 5FU: animals received the same treatment as the previous groups. After ten-week treatment, mice's large intestine was collected and subjected to colon length, histopathological, periodic acid-schiff (PAS) staining and immunohistochemistry (TLR2, MyD88, NF-κB, IL-6, TLR4, TRIF, IRF-3, IFN-γ, Ki-67, KRAS, p53, IL-10, and TGF-ß) analyzes. Variance (ANOVA) and Kruskal-Wallis tests were used for statistical analysis, at significance level p 0.05. Probiotics' supplementation has increased the production of Ki-67 cell-proliferation marker, reduced body weight, and colon shortening, as well as modulated the chronic inflammatory process in colorectal carcinogenesis by inhibiting NF-κB expression and mitigating mucin depletion. Thus, these findings lay a basis for guide future studies focused on probiotics' action mechanisms in tumor microenvironment which might have implications in clinical practice.


Assuntos
Neoplasias Colorretais , Probióticos , Camundongos , Animais , 1,2-Dimetilidrazina/toxicidade , NF-kappa B , Antígeno Ki-67 , Carcinogênese/patologia , Probióticos/farmacologia , Probióticos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/patologia , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Colo/microbiologia , Colo/patologia , Microambiente Tumoral
3.
J Mol Med (Berl) ; 102(2): 183-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010437

RESUMO

As SARS-CoV-2 continues to produce new variants, the demand for diagnostics and a better understanding of COVID-19 remain key topics in healthcare. Skin manifestations have been widely reported in cases of COVID-19, but the mechanisms and markers of these symptoms are poorly described. In this cross-sectional study, 101 patients (64 COVID-19 positive patients and 37 controls) were enrolled between April and June 2020, during the first wave of COVID-19, in São Paulo, Brazil. Enrolled patients had skin imprints sampled non-invasively using silica plates; plasma samples were also collected. Samples were used for untargeted lipidomics/metabolomics through high-resolution mass spectrometry. We identified 558 molecular ions, with lipids comprising most of them. We found 245 plasma ions that were significant for COVID-19 diagnosis, compared to 61 from the skin imprints. Plasma samples outperformed skin imprints in distinguishing patients with COVID-19 from controls, with F1-scores of 91.9% and 84.3%, respectively. Skin imprints were excellent for assessing disease severity, exhibiting an F1-score of 93.5% when discriminating between patient hospitalization and home care statuses. Specifically, oleamide and linoleamide were the most discriminative biomarkers for identifying hospitalized patients through skin imprinting, and palmitic amides and N-acylethanolamine 18:0 were also identified as significant biomarkers. These observations underscore the importance of primary fatty acid amides and N-acylethanolamines in immunomodulatory processes and metabolic disorders. These findings confirm the potential utility of skin imprinting as a valuable non-invasive sampling method for COVID-19 screening; a method that may also be applied in the evaluation of other medical conditions. KEY MESSAGES: Skin imprints complement plasma in disease metabolomics. The annotated markers have a role in immunomodulation and metabolic diseases. Skin imprints outperformed plasma samples at assessing disease severity. Skin imprints have potential as non-invasive sampling strategy for COVID-19.


Assuntos
COVID-19 , Doenças Metabólicas , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Estudos Transversais , Brasil , Metaboloma , Metabolômica/métodos , Biomarcadores , Amidas , Íons
4.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139364

RESUMO

This study assessed the safety and efficacy of OncoTherad® (MRB-CFI-1) nanoimmunotherapy for non-muscle invasive bladder cancer (NMIBC) patients unresponsive to Bacillus Calmette-Guérin (BCG) and explored its mechanisms of action in a bladder cancer microenvironment. A single-arm phase I/II study was conducted with 44 patients with NMIBC who were unresponsive to BCG treatment. Primary outcomes were pathological complete response (pCR) and relapse-free survival (RFS). Secondary outcomes comprised response duration and therapy safety. Patients' mean age was 65 years; 59.1% of them were refractory, 31.8% relapsed, and 9.1% were intolerant to BCG. Moreover, the pCR rate after 24 months reached 72.7% (95% CI), whereas the mean RFS reached 21.4 months. Mean response duration in the pCR group was 14.3 months. No patient developed muscle-invasive or metastatic disease during treatment. Treatment-related adverse events occurred in 77.3% of patients, mostly grade 1-2 events. OncoTherad® activated the innate immune system through toll-like receptor 4, leading to increased interferon signaling. This activation played a crucial role in activating CX3CR1+ CD8 T cells, decreasing immune checkpoint molecules, and reversing immunosuppression in the bladder microenvironment. OncoTherad® has proved to be a safe and effective therapeutic option for patients with BCG-unresponsive NMIBC, besides showing likely advantages in tumor relapse prevention processes.


Assuntos
Imunoterapia , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Idoso , Humanos , Adjuvantes Imunológicos/uso terapêutico , Administração Intravesical , Vacina BCG/uso terapêutico , Receptor 1 de Quimiocina CX3C , Invasividade Neoplásica , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias não Músculo Invasivas da Bexiga/terapia , Transdução de Sinais , Receptor 4 Toll-Like/uso terapêutico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Imunoterapia/métodos , Sistemas de Liberação de Fármacos por Nanopartículas
5.
Int Immunopharmacol ; 123: 110723, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531827

RESUMO

Patients with non-muscle invasive bladder cancer (NMIBC) that are unresponsive to Bacillus Calmette-Guérin (BCG) have historically had limited treatment options. A new perspective is represented by OncoTherad® (MRB-CFI-1) immunotherapy, a nanostructured inorganic phosphate complex associated with glycosidic protein, developed by the University of Campinas in Brazil. Previous studies have shown that Platelet-Rich Plasma (PRP) also acts on immune activation and exerts antitumor effects. This study characterized the effects of the OncoTherad® associated with PRP in the treatment of NMIBC chemically induced in mice. When treated intravesically with PRP only, mice showed 28.6% of tumor progression inhibition rate; with OncoTherad® 85.7%; and with OncoTherad®+PRP 71.4%. Intravesical treatments led to distinct activation of Toll-like Receptors (TLRs) 2 and 4-mediated innate immune system in the interleukins (canonical) and interferons (non-canonical) signaling pathways. OncoTherad® isolated or associated with PRP upregulated TLR4 and its downstream cascade mediators as well as increased interleukins 6 (IL-6) and 1ß (IL-1ß), and interferon-γ (IFN-γ). In this way, the NMIBC microenvironment was modulated to a cytotoxic profile correlated with the IL-1ß increase by stimulating immune pathways for IFN-γ production and consequent cytotoxic T lymphocytes (as CD8+ T-cells) activation and regulatory T-cells (Tregs) reduction. In addition, PRP did not trigger carcinogenic effects through the biomarkers evaluated. Considering the possibility of personalizing the treatment with the PRP use as well as the antitumor properties of OncoTherad®, we highlight this association as a potential new therapeutic strategy for NMIBC, mainly in cases of relapse and/or resistance to BCG.


Assuntos
Neoplasias não Músculo Invasivas da Bexiga , Plasma Rico em Plaquetas , Neoplasias da Bexiga Urinária , Humanos , Camundongos , Animais , Vacina BCG , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Fosfatos/uso terapêutico , Imunoterapia , Adjuvantes Imunológicos/uso terapêutico , Microambiente Tumoral
6.
Microorganisms ; 11(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37512989

RESUMO

Wound infections are feared complications due to their potential to increase healthcare costs and cause mortality since multidrug-resistant bacteria reduce treatment options. This study reports the development of a carbomer hydrogel containing biogenic silver nanoparticles (bioAgNPs) and its effectiveness in wound treatment. This hydrogel showed in vitro bactericidal activity after 2 h, according to the time-kill assay. It also reduced bacterial contamination in rat wounds without impairing their healing since the hydrogel hydrophilic groups provided hydration for the injured skin. The high number of inflammatory cells in the first days of the skin lesion and the greater degree of neovascularization one week after wound onset showed that the healing process occurred normally. Furthermore, the hydrogel-containing bioAgNPs did not cause toxic silver accumulation in the organs and blood of the rats. This study developed a bioAgNP hydrogel for the treatment of wounds; it has a potent antimicrobial action without interfering with cicatrization or causing silver bioaccumulation. This formulation is effective against bacteria that commonly cause wound infections, such as Pseudomonas aeruginosa and Staphylococcus aureus, and for which new antimicrobials are urgently needed, according to the World Health Organization's warning.

7.
Tissue Cell ; 83: 102132, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331321

RESUMO

The aims of this study were to characterize and to compare the structural alterations of collagen and elastic fibers in the abdominal stretch marks of patients submitted to intralesional and per quadrant (region close to stretch marks) Platelet-Rich Plasma (PRP) treatment, as well as, to establish the possible mechanisms of action of this treatment involving toll-like receptors (TLRs) signaling pathways and growth factors. Incisional biopsies were collected from abdominal stretch marks with a 2 mm diameter punch in female patients, at the beginning of treatment, after 6 and 12 weeks of treatment, and submitted to morphological analyzes of elastic and collagen fibers, and immunohistochemistry for TLRs signaling pathways and growth factors. Our results demonstrated PRP per quadrant treatment was most effective in reducing the area of the abdominal stretch marks, with consequent stimulation of the synthesis and remodeling of collagen and elastic fibers. Also, PRP per quadrant treatment promoted an increase in TLR2 and TLR4 immunoreactivities, with consequent increase in TNF-α, VEGF and IGF-1. Based on the current findings, PRP constitutes a promising therapeutic approach in patients with stretch marks, since it promoted modulation of inflammatory cytokines and growth factors, with consequent remodeling of extracellular matrix, culminating with tissue improvement.


Assuntos
Plasma Rico em Plaquetas , Estrias de Distensão , Humanos , Feminino , Cicatrização , Colágeno , Citocinas , Peptídeos e Proteínas de Sinalização Intercelular
8.
Antibiotics (Basel) ; 12(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37107119

RESUMO

Resistant bacteria may kill more people than COVID-19, so the development of new antibacterials is essential, especially against microbial biofilms that are reservoirs of resistant cells. Silver nanoparticles (bioAgNP), biogenically synthesized using Fusarium oxysporum, combined with oregano derivatives, present a strategic antibacterial mechanism and prevent the emergence of resistance against planktonic microorganisms. Antibiofilm activity of four binary combinations was tested against enteroaggregative Escherichia coli (EAEC) and Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC): oregano essential oil (OEO) plus bioAgNP, carvacrol (Car) plus bioAgNP, thymol (Thy) plus bioAgNP, and Car plus Thy. The antibiofilm effect was accessed using crystal violet, MTT, scanning electron microscopy, and Chromobacterium violaceum anti-quorum-sensing assays. All binary combinations acted against preformed biofilm and prevented its formation; they showed improved antibiofilm activity compared to antimicrobials individually by reducing sessile minimal inhibitory concentration up to 87.5% or further decreasing biofilm metabolic activity and total biomass. Thy plus bioAgNP extensively inhibited the growth of biofilm in polystyrene and glass surfaces, disrupted three-dimensional biofilm structure, and quorum-sensing inhibition may be involved in its antibiofilm activity. For the first time, it is shown that bioAgNP combined with oregano has antibiofilm effect against bacteria for which antimicrobials are urgently needed, such as KPC.

9.
J Cancer Res Clin Oncol ; 149(8): 5025-5036, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36322290

RESUMO

INTODUCTION: Bladder cancer is the second most common urinary tract cancer. Above 70% of the occurrence of bladder cancer is superficial (pTis, pTa, and pT1), non-muscle invasive tumor (NMIBC), and the incidence of invasive disease is occasional. Treatments for NMIBC consist of transurethral resection (TUR) and subsequently intravesical immunotherapy with Bacillus Calmette-Guérin (BCG), intending to prevent tumor progression and decrease recurrence. However, 20-30% of these tumors have progression, and 70% have a recurrence after exclusive TUR treatment. The immunomodulator of biological response, OncoTherad®, is an attractive potential to revolutionize cancer therapy. In our previous studies with mice, the results showed that treatment with OncoTherad® reduced 100% of tumor progression in NMIBC through the activation of Toll-Like Receptors' non-canonical pathway. MATERIALS AND METHODS:  In the present study, 36 female C57Bl/6J mice were divided into 6 groups (n = 6/group): Control, Cancer, Cancer + BCG, Cancer + OncoTherad® (MRB-CFI-1), Cancer + P14-16 and Cancer + CFI-1. NMIBC was chemically induced and the treatments were followed for 6 weeks. A week after the last dose of treatment, animals were euthanized, the bladder was collected and routinely processed for immunohistochemical analyses of RANK, RANKL, FOXP3, and PD-1/PD-L1, such as PD-1/PD-L1 western blotting. CONCLUSION: The immunohistochemical results showed that OncoTherad® reduced RANK and RANKL immunoreactivities compared to the cancer group, which indicates a good prognosis. Immunohistochemical and western blotting analyses confirmed that OncoTherad® modulated PD-1/PD-L1 immune checkpoint.


Assuntos
Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Feminino , Animais , Camundongos , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Vacina BCG/uso terapêutico , Administração Intravesical , Neoplasias da Bexiga Urinária/patologia , Adjuvantes Imunológicos/uso terapêutico , Transdução de Sinais , Recidiva Local de Neoplasia/patologia , Invasividade Neoplásica
10.
Front Chem ; 10: 914126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873038

RESUMO

Violacein (Viol) is a bacterial purple water-insoluble pigment synthesized by Chromobacterium violaceum and other microorganisms that display many beneficial therapeutic properties including anticancer activity. Viol was produced, purified in our laboratory, and encapsulated in a nanostructured lipid carrier (NLC). The NLC is composed of the solid lipid myristyl myristate, an oily lipid mixture composed of capric and caprylic acids, and the surfactant poloxamer P188. Dormant lipase from Rhizomucor miehei was incorporated into the NLC-Viol to develop an active release system. The NLC particle size determined by dynamic light scattering brings around 150 nm particle size and ζ≈ -9.0 mV with or without lipase, but the incorporation of lipase increase the PdI from 0.241 to 0.319 (≈32%). For scaffold development, a 2.5 hydroxypropyl methylcellulose/chitosan ratio was obtained after optimization of a composite for extrusion in a 3D-bioprinter developed and constructed in our laboratory. Final Viol encapsulation efficiency in the printings was over 90%. Kinetic release of the biodye at pH = 7.4 from the mesh containing NLC-lipase showed roughly 20% Viol fast release than without the enzyme. However, both Viol kinetic releases displayed similar profiles at pH = 5.0, where the lipase is inactive. The kinetic release of Viol from the NLC-matrices was modeled and the best correlation was found with the Korsmeyer-Peppas model (R2 = 0.95) with n < 0.5 suggesting a Fickian release of Viol from the matrices. Scanning Electron Microscope (SEM) images of the NLC-meshes showed significant differences before and after Viol's release. Also, the presence of lipase dramatically increased the gaps in the interchain mesh. XRD and Fourier Transform Infrared (FTIR) analyses of the NLC-meshes showed a decrease in the crystalline structure of the composites with the incorporation of the NLC, and the decrease of myristyl myristate in the mesh can be attributed to the lipase activity. TGA profiles of the NLC-meshes showed high thermal stability than the individual components. Cytotoxic studies in A549 and HCT-116 cancer cell lines revealed high anticancer activity of the matrix mediated by mucoadhesive chitosan, plus the biological synergistic activities of violacein and lipase.

11.
Bioorg Chem ; 127: 106000, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853296

RESUMO

In the last decade, emerging evidence has shown that low molecular weight protein tyrosine phosphatase (LMWPTP) not only contributes to the progression of cancer but is associated with prostate low survival rate and colorectal cancer metastasis. We report that LMWPTP favors the glycolytic profile in some tumors. Therefore, the focus of the present study was to identify metabolic enzymes that correlate with LMWPTP expression in patient samples. Exploratory data analysis from RNA-seq, proteomics, and histology staining, confirmed the higher expression of LMWPTP in CRC. Our descriptive statistical analyses indicate a positive expression correlation between LMWPTP and energy metabolism enzymes such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN). In addition, we examine the potential of violacein to reprogram energetic metabolism and LMWPTP activity. Violacein treatment induced a shift of glycolytic to oxidative metabolism associated with alteration in mitochondrial efficiency, as indicated by higher oxygen consumption rate. Particularly, violacein treated cells displayed higher proton leak and ATP-linked oxygen consumption rate (OCR) as an indicator of the OXPHOS preference. Notably, violacein is able to bind and inhibit LMWPTP. Since the LMWPTP acts as a hub of signaling pathways that offer tumor cells invasive advantages, such as survival and the ability to migrate, our findings highlight an unexplored potential of violacein in circumventing the metabolic plasticity of tumor cells.


Assuntos
Neoplasias Colorretais , Proteínas Tirosina Fosfatases , Neoplasias Colorretais/patologia , Humanos , Indóis , Masculino , Mitocôndrias/metabolismo , Peso Molecular , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
12.
Int J Low Extrem Wounds ; : 15347346221109758, 2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35786036

RESUMO

Diabetic foot ulcer is a severe Diabetic Mellitus-associated complication. It is induced by poor glycemic control, which leads to peripheral neuropathy and vascular diseases. Platelet-rich plasma could be beneficial for healing processes due to its active biomolecules that promotes immunomodulation, angiogenesis, cell proliferation and analgesia.

13.
J Cell Biochem ; 123(7): 1247-1258, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661241

RESUMO

Violacein is a secondary metabolite produced by several microorganisms including Chromobacterium violaceum, and it is already used in food and cosmetics. However, due to its potent anticancer and low side effects, its molecular action needs to be deeply scrutinized. Therefore, the main objective of this study was to evaluate the violacein's ability to interfere with three cancer hallmarks: growth factors receptor-dependent signaling, proliferation, and epithelial-mesenchymal transition (EMT). Violacein has been associated with the induction of apoptosis in colorectal cancer (CRC) cells. Here, we demonstrate that this molecule is also active in CRC spheroids and inhibits cell migration. Violacein treatment reduced the amount of EGFR and AXL receptors in the HT29 cell line. Accordingly, the inhibition of the AKT, ERK, and PKCδ kinases, which are downstream mediators of the signaling pathways triggered by EGFR and AXL, is detected. Another interesting finding was that even when the cells were stimulated with transforming growth factor-ß, the EMT marker (N-cadherin) decreased. Therefore, this study provides further evidence that reinforces the potential of violacein as an antitumor agent, once this biomolecule can "switch off" properties associated with cancer plasticity.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/metabolismo , Receptores ErbB , Humanos , Indóis/farmacologia
14.
Bioengineered ; 13(6): 14227-14258, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35734783

RESUMO

Pigments are among the most fascinating molecules found in nature and used by human civilizations since the prehistoric ages. Although most of the bio-dyes reported in the literature were discovered around the eighties, the necessity to explore novel compounds for new biological applications has made them resurface as potential alternatives. Prodigiosin (PG) is an alkaloid red bio-dye produced by diverse microorganisms and composed of a linear tripyrrole chemical structure. PG emerges as a really interesting tool since it shows a wide spectrum of biological activities, such as antibacterial, antifungal, algicidal, anti-Chagas, anti-amoebic, antimalarial, anticancer, antiparasitic, antiviral, and/or immunosuppressive. However, PG vehiculation into different delivery systems has been proposed since possesses low bioavailability because of its high hydrophobic character (XLogP3-AA = 4.5). In the present review, the general aspects of the PG correlated with synthesis, production process, and biological activities are reported. Besides, some of the most relevant PG delivery systems described in the literature, as well as novel unexplored applications to potentiate its biological activity in biomedical applications, are proposed.


Assuntos
Antineoplásicos , Prodigiosina , Antibacterianos/farmacologia , Antifúngicos , Humanos , Prodigiosina/farmacologia , Serratia marcescens/química
15.
Front Microbiol ; 13: 842600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602016

RESUMO

Multidrug-resistant bacteria have become a public health problem worldwide, reducing treatment options against several pathogens. If we do not act against this problem, it is estimated that by 2050 superbugs will kill more people than the current COVID-19 pandemic. Among solutions to combat antibacterial resistance, there is increasing demand for new antimicrobials. The antibacterial activity of binary combinations containing bioAgNP (biogenically synthesized silver nanoparticles using Fusarium oxysporum), oregano essential oil (OEO), carvacrol (Car), and thymol (Thy) was evaluated: OEO plus bioAgNP, Car plus bioAgNP, Thy plus bioAgNP, and Car plus Thy. This study shows that the mechanism of action of Thy, bioAgNP, and Thy plus bioAgNP involves damaging the membrane and cell wall (surface blebbing and disruption seen with an electron microscope), causing cytoplasmic molecule leakage (ATP, DNA, RNA, and total proteins) and oxidative stress by enhancing intracellular reactive oxygen species and lipid peroxidation; a similar mechanism happens for OEO and Car, except for oxidative stress. The combination containing bioAgNP and oregano derivatives, especially thymol, shows strategic antibacterial mechanism; thymol disturbs the selective permeability of the cell membrane and consequently facilitates access of the nanoparticles to bacterial cytoplasm. BioAgNP-treated Escherichia coli developed resistance to nanosilver after 12 days of daily exposition. The combination of Thy and bioAgNP prevented the emergence of resistance to both antimicrobials; therefore, mixture of antimicrobials is a strategy to extend their life. For antimicrobials alone, minimal bactericidal concentration ranges were 0.3-2.38 mg/ml (OEO), 0.31-1.22 mg/ml (Car), 0.25-1 mg/ml (Thy), and 15.75-31.5 µg/ml (bioAgNP). The time-kill assays showed that the oregano derivatives acted very fast (at least 10 s), while the bioAgNP took at least 30 min to kill Gram-negative bacteria and 7 h to kill methicillin-resistant Staphylococcus aureus (MRSA). All the combinations resulted in additive antibacterial effect, reducing significantly minimal inhibitory concentration and acting faster than the bioAgNP alone; they also showed no cytotoxicity. This study describes for the first time the effect of Car and Thy combined with bioAgNP (produced with F. oxysporum components) against bacteria for which efficient antimicrobials are urgently needed, such as carbapenem-resistant strains (E. coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) and MRSA.

16.
Mol Biol Rep ; 49(7): 6931-6943, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35301654

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is known that host microRNAs (miRNAs) can be modulated to favor viral infection or to protect the host. Herein, we report preliminary results of a study aiming at identifying differentially expressed plasmatic miRNAs in Brazilian patients with COVID-19. METHODS AND RESULTS: miRNAs were extracted from the plasma of eight patients with COVID-19 (four patients with mild COVID-19 and four patients with severe/critical COVID-19) and four healthy controls. Patients and controls were matched for sex and age. miRNA expression levels were detected using high-throughput sequencing. Differential miRNA expression and enrichment analyses were further evaluated. A total of 18 miRNAs were differentially expressed between patients with COVID-19 and controls. miR-4433b-5p, miR-6780b-3p, miR-6883-3p, miR-320b, miR-7111-3p, miR-4755-3p, miR-320c, and miR-6511a-3p were the most important miRNAs significantly involved in the PI3K/AKT, Wnt/ß-catenin, and STAT3 signaling pathways. Moreover, 42 miRNAs were differentially expressed between severe/critical and mild patients with COVID-19. miR-451a, miR-101-3p, miR-185-5p, miR-30d-5p, miR-25-3p, miR-342-3p, miR-30e-5p, miR-150-5p, miR-15b-5p, and miR-29c-3p were the most important miRNAs significantly involved in the Wnt/ß-catenin, NF-κß, and STAT3 signaling pathways. CONCLUSIONS: If validated by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in a larger number of participants, the miRNAs identified in this study might be used as possible biomarkers for the diagnosis and severity of COVID-19.


Assuntos
COVID-19 , MicroRNAs , Brasil/epidemiologia , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Humanos , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , SARS-CoV-2 , beta Catenina/genética
17.
Tissue Cell ; 75: 101747, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35149440

RESUMO

This study evaluated the effects of combined OncoTherad immunotherapy and probiotic supplementation on colorectal carcinogenesis chemically induced with 1,2-dimethylhydrazine (DMH) in mice. The animals were randomly allocated in five groups: Control, DMH: did not receive any treatment; DMH + OncoTherad: received weekly I.P. (intraperitoneal) dose of OncoTherad; DMH + Probiotic: received daily administrations via gavage of the functional food (Lactobacillus: acidophilus and paracasei, Bifidobacterium: lactis and bifidum) and DMH + Probiotic + OncoTherad: received the same treatment than the previous groups. After ten weeks of treatment, the large intestine was collected for immunohistochemical analysis of TLR4, MyD88, NF-κB, IL-6, TLR2, TRIF, IRF-3, IFN-γ, Ki-67, KRAS, IL-10, and TGF-ß. For the statistical analysis, the variance tests (ANOVA) and Kruskal-Wallis were used and significance set at p < 0.05. Probiotic supplementation associated with the OncoTherad were able to modulate weight loss, stimulate the canonical signaling pathway TLR2/TLR4 (MyD88-dependent), reduce the non-canonical signaling pathway (TRIF-dependent), attenuate the proliferative pathway mediated by Ki-67 and KRAS oncogene, and stimulate the production of IL-10 and TGF-ß cytokines. Thus, the association of OncoTherad and probiotic supplementation has shown important immudomulatory effects and could be considered a potential new therapeutic approach for colorectal cancer after further investigations.


Assuntos
Neoplasias Colorretais , Probióticos , Animais , Carcinogênese , Neoplasias Colorretais/terapia , Glicoproteínas , Imunoterapia , Camundongos , Nanoestruturas , Fosfatos , Probióticos/farmacologia , Probióticos/uso terapêutico
18.
Med Oncol ; 39(2): 24, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982270

RESUMO

This work describes the effects of immunotherapy with Protein Aggregate Magnesium-Ammonium Phospholinoleate-Palmitoleate Anhydride in the treatment of non-muscle invasive bladder cancer in an animal model. NMIBC was induced by treating female Fischer 344 rats with N-methyl-N-nitrosourea. After treatment with MNU, the rats were distributed into four experimental groups: Control (without MNU) group, MNU (cancer) group, MNU-BCG (Bacillus Calmette-Guerin) group, and MNU-P-MAPA group. P-MAPA intravesical treatment was more effective in histopathological recovery from cancer state in relation to BCG treatment. Western blot assays showed an increase in the protein levels of c-Myc, COUP-TFII, and wild-type p53 in P-MAPA-treated rats in relation to BCG-treated rats. In addition, rats treated with P-MAPA intravesical immunotherapy showed the highest BAX protein levels and the lowest proliferation/apoptotic ratio in relation to BCG-treated rats, pointing out a preponderance of apoptosis. P-MAPA intravesical treatment increased the wild-type p53 levels and enhanced c-Myc/COUP-TFII-induced apoptosis mediated by p53. These alterations were fundamental for histopathological recovery from cancer and for suppress abnormal cell proliferation. This action of P-MAPA on apoptotic pathways may represent a new strategy for treating NMIBC.


Assuntos
Agentes de Imunomodulação/administração & dosagem , Ácidos Linoleicos/administração & dosagem , Ácidos Oleicos/administração & dosagem , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia , Administração Intravesical , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Imunoterapia/métodos , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos Endogâmicos F344 , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Proteína X Associada a bcl-2/metabolismo
19.
Ticks Tick Borne Dis ; 13(1): 101849, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656044

RESUMO

Among many species of ticks that affect beef and dairy cattle, Rhipicephalus (Boophilus) microplus is the most common. It is responsible for heavy losses in milk and meat production. In this work we introduce nanostructures such as chitosan-poly-Ɛ-caprolactone (CS_PCL) nanoparticles to encapsulate amitraz (CS_PCLnp_Amitraz) and fluazuron (CS_PCLnp_Fluazuron) to treat tick infestations more effectively. The CS_PCLnp_Amitraz system has a final amitraz concentration of 1.0 mg/mL with a particle size of 275 ± 30 nm, surface charge of +43 ± 7 mV and entrapment efficiency of 77 ± 1%. The CS_PCLnp_Fluazuron system has a drug concentration of 0.5 mg/mL with a particle size of 295 ± 35 nm, surface charge of +45 ± 10 mV and entrapment efficiency of 89 ± 1%. Both systems reduced cytotoxicity on Balb/c 3T3 culture cells and were also active against R. microplus. Both molecules - amitraz and fluazuron - formed molecularly dispersed active compounds inside the core of the PCL polymer matrix. The PCL surface was composed of a chitosan layer, which influenced the stability of the steric nanoparticles at pH greater than 7. Both systems were stable at a saline concentration of 1.25 mol/L and at temperatures below 50 °C. Experiments conducted in vivo with CS_PCLnp_Amitraz, at doses of active ingredient equivalent to those of commercial products, showed decreased tick infestation for 21 days, as well as higher acaricide effect than observed for commercial products, which recommend a reapplication in 14 days. The acaricide effect was even stronger when CS_PCLnp_Amitraz (same dose as for commercial products) and CS_PCLnp_Fluazuron (half of the amount for commercial products) were administered together.


Assuntos
Acaricidas , Doenças dos Bovinos , Quitosana , Nanopartículas , Rhipicephalus , Infestações por Carrapato , Acaricidas/farmacologia , Acaricidas/uso terapêutico , Animais , Caproatos , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Quitosana/farmacologia , Quitosana/uso terapêutico , Lactonas , Infestações por Carrapato/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...